
COS 426 Final Project Writeup
Raymarching with Signed Distance Fields

Benjamin Huang, Jake Waksbaum and Anvay Grover

May 13, 2020

Abstract

We explore an alternative technique to raytracing for rendering 3D scenes
called signed distance field raymarching that represents the entire scene using
a signe ddistance field (SDF) that maps each point in space to the distance
to the nearest object. We are able to implement comparable features to the
raytracer in assignment 3 at near real-time frame rates (10-30 FPS). We also
render a scene that would be infeasible to produce with raytracing due to its
recursive nature. We highlight the composable nature of the SDF representation
by building an editor that allows users to build complex shapes by composing
primitives with transformations.

1 Introduction

Raytracing is a method for rendering realistic scenes. It operates by conceptually
tracing a ray backwards from the viewer’s eye until it hits an object. To determine if
a ray hits an object, we must be able to analytically solve the intersection equation
v⃗eye + r⃗t = S, where S is a shape in the scene. Then the solution with the smallest
t represents the nearest intersection.

Raymarching is an alternative techinque to raytracing that avoids analytically solv-
ing equations to determine intersection points. Instead, it ”marches” along the ray
until we find an intersection with the scene by, which corresponds to checking the
intersection equation for increasing values of t. Checking if we intersect with a shape
at a given point still involves querying every shape in the scene, but that operation
can be much faster than the computations required to solve the equations analyt-
ically. For example, we can check if p⃗ = v⃗eye + r⃗t interesects a sphere with radius

1

r centered at c⃗ just by checking |p⃗ − c⃗| ≤ r. The analytic solution involves more
computation, including square roots.

One concern with raymarching is step-size: the larger your step-size, the greater
the risk of missing an intersection, but the samller the step-size, the more steps you
have to take to rener the scene. One solution to this issue is to use a signed distance
field to determine how large a step to take along the ray. The signed distance field
f : R3 → R is a function that assigns to each point in space the signed distance
to the nearest object. This means that the distance is negative for points inside
of objects. When marching, we can always take a step equal to the value of the
signed distance at the current point and we can be sure we won’t miss a possible
intersection.

Another advantage of signed distance fields is in computing normals: to calculate
lighting and shading, one needs the normal to a surface at the point. In raytracing,
that involves again analytically computing the normal to the surface. With signed
distance fields, we can approximate the normal by approximating the gradient of
the distance field:

n⃗ ≈
⟨
∂f

∂x
,
∂f

∂y
,
∂f

∂z

⟩
≈ ⟨f(p+ ϵûx)− f(p− ϵûx), f(p+ ϵûy)− f(p− ϵûy), f(p+ ϵûz)− f(p− ϵûz)⟩

This can also be a more efficient way of evaluating the normal.

In addition to performance benefits, the signed distance fields offers a representa-
tion of objects is more flexible than the analytic representation used in raytracing.
In raytracing, the intersection and normal equations for each type of object such
as sphers, boxes, cylinders, and cones, are solved by hand and those solutions are
encoded directly into the raytracer. This makes it difficult to compose or modify the
primitives. With signed distance fields, it is easy to compose and transform primi-
tives. For example, given the signed distance field f of an object, we can translate
it by t⃗ using f ′(p⃗) = f(p⃗ − t⃗), scale it by s using f ′(p⃗) = sf(p⃗/s) and intersect
it with another object with signed distance field g using f ′(p⃗) = max(f(p⃗), g(p⃗)).
We can also develop more exiotic transformations, like infinitely tiling a shape us-
ing f ′(p⃗) = f(p⃗ mod 1). Some of these transformations can be used to create rich,
complex scenes that use fewer primitives than one would expect, which improves
rendering speed.

Our goal was to explore signed distance field raymarching, and to showcase a few of
its benefits related to performance, flexibility, and compositionality. We wanted to
replicate the features of the raytracer in assignment 3 at closer to real-time rendering
speeds. We wanted to showcase the flexibility of signed distance fields by creating
a scene that used their recursive nature to create a scene that would be infeasible

2

to render with a raytracer. Finally, we wanted to build an interactive editor that
allows you to compose primitives and transformations into more complex shapes in
an intuitive and exciting way.

In terms of previous work on signed distance field raymarching, Inigo Quilez’s web-
site [4, 5, 6] and the hg_sdf library [1] were the two biggest resources we referred to.
Inigo is one of the creators of Shadertoy, an online community for sharing shaders.
hg_sdf is a GLSL library for signed distance functions.

2 Methodology

2.1 Shader compilation

To build a raytracer, we need to set up a canvas, set up WebGL, and make it so our
shader is called on every single pixel. Thisis all taken care of in src/lib/shader.js,
which provides a function initCanvas that takes a canvas, and returns a callback
function render and a function newShader that will compile and set up a shader
program from a fragment shader source. The render function is called with the
time, camera angles, camera position, and shader during each frame.

The newShader program is a closure around the Shader constructor used to re-
member the GL context. The Shader class also defined in src/lib/shader.js,
and its main job is to lazily construct the GL shader program, the vertex array,
and the uniform locations that are used in render. It does this by creating private
properties (marked by a hash) #program, #vao, and #uniforms. Then, it defines
getter methods for the public properties of the same name that check if the private
property has been initialized, and if not runs the correct computation and caches
the result in the private property. This is useful, because the steps of preparing the
GL program can take some time, and this ensures that we wait until each part is
needed before we compute it. We don’t need to compile all of the shaders available
on the main page of our application; we can wait until they are selected.

2.2 Raymarching

We wanted to share raymarching engine between all of our raymarching scenes.
To that end, we define functions that can be used to define a signed distance
field in shaders/lib.frag, and we define the rest of the raymarching engine in
shaders/engine.frag. To build the full fragment shader, we splice the scene-
specific part in between the library and the engine. That fragment has to define a

3

few variables and function:

• The signed distance field itself float sdf(vec3 p, out Material mat). It
returns the distance to the nearest object at the point p, and puts the material
of that object in mat.

• const int MAX_STEPS determines the maximum number of steps the ray-
marcher will make.

• const int MAX_DISTANCE determines the maximum distance a point can be
from an object and still be considered to have hit it.

• const vec4 BACKGROUND_COLOR is the color of pixels that don’t hit an object.

• const int N_LIGHTS is the number of lights in the scene.

• Light lights[N_LIGHTS] is an array of light objects.

• void init() is a function that is called once at the beginning of the fragment
shader. This allows the scene to initialize scene-specific global variables.

The core of our raymarching engine is the march function in shaders/engine.frag.
For a given ray r defined by an origin and direction, the march function will calculate
the first intersection point along r. It does this by iteratively stepping along the
ray, starting from the origin. On each iteration, it calculates the signed distance d
from the point p to the nearest object by calling sdf. If this distance is very near
or less than 0, march returns a Hit object, containing the distance to the object, the
point in the scene where the intersection occurred, and the material of the nearest
object. This behavior is modified wit the introduction of reflection and refraction,
described below. If the distance is not near 0, then p is moved d along the ray.
This should guarantee that the sampled points along the ray never skip over an
intersection point. This loop continues to iterate for MAX_STEPS.

If no intersection is found in MAX_STEPS, then a Hit object is constructed for the final
sample point along the ray. In certain situations, this data can be used to improve
performance by assuming such Hit objects represent valid scene intersections unless
the distance is very large. For example, the number of steps required to render
an infinite plane effectively can be vastly cut down by assuming even distant Hit
objects would eventually hit the plane.

2.3 Hard and soft shadows

To calculate hard shadows at a particular point p in the scene, we follow an analogous
process to what we implemented in assignment 3. For each light in the scene, the

4

shadow function in shaders/engine.frag is called. A marching loop very similar
to the one described above is run to march from the point in the scene to the light.
If an object is intersected during this march, then shadow returns 0. Otherwise, it
returns 1.

An enormous advantage of raymarching over raytracing is the ability to calculate
soft shadows using the same number of rays as hard shadows. In fact, there are
only a few additional lines of code to calculate soft shadows. To approximate light
sources as spheres of light instead of point light sources, we want to assume only
some fraction of the light will make it to a point p if a ray comes too close to an
object. Because we are using signed distance fields, we already have this information!
So, at every time step, we calculate a ratio of the light that the point receives, whose
value corresponds to the distance to the nearest intersection. Furthermore, we want
this ratio to inversely correspond to the distance from the origin point p that the
intersection occurred. We take the min across these ratios, initializing to the max
value. Our original equation was

r = min(r,
dist_to_obj

dist_from_p · w
),

where w is a parameter that controls the sharpness (closer to 0 is sharper). It
became clear that the inverse relation to the distance from the origin should not be
linear. With a linear drop-off, immense shadow artifacts would crop up when light
sources were placed near objects. As such, we added a log to the denominator:

r = min(r,
dist_to_obj

log(dist_from_p · w + 1.0)
),

which effectively eliminated the shadow artifacts. Note that this ratio is actually in
the range [−1, 1] to optimize a multiplication and divide out of the marching loop.
As such, before returning, we use the smoothstep function to change the range to
[0, 1].

2.4 Phong shading

Phong shading is very similar to what we implemented in assignment 3. In calcColor
in shaders/engine.frag, we loop over all of the lights in the scene-defined lights
array and accumulate the contributions of each. Those contributions are calculated
in phongContrib. The Phong reflection model [3] says that a light with RGB in-
tensity i⃗ shining on a material with specular reflection k⃗s, diffuse reflection k⃗d, and
shininess α will contribute a term

(L̂ · N̂)(k⃗s ⊙ i⃗) + (R̂ · V̂)α(k⃗d ⊙ i⃗)

5

where L̂ is the vector from the point to the light-source, N̂ is the normal to the
surface, R̂ is the direction a ray of light would go if reflected perfectly off the
surface, and V̂ is the vector from the surface to the viewer. ⊙ denotes element-wise
multiplication. It’s also important that if either of the dot products is negative, that
term be ignored (there is no negative light here) so we clip them below to zero.

2.5 Reflection and refraction

We have 3 kinds of reflection types for the materials of our objects. NONREFLECT
models a simple opaque surface that does not reflect light. This is our default re-
flection type. MIRRORREFLECT models a simple mirror-like surface that reflects
all the light incident on it. When we have a ray intersection with such a surface,
we use the GLSL reflect function to compute the new direction of the ray. We then
continue marching in this new direction. As a result, the color that we compute for
this ray corresponds to the intersection point of this reflected ray.

Lastly, we have the GLASSREFLECT reflection type, which models a glass-like
surface and is the most tricky to get right. We go for a relatively simple glass-like
effect where we refract the direction of the ray when the ray first enters the glass,
continue marching along the ray, and then refract again when we exit the glass. A
more sophisticated approach, that we attempted to take but were unsuccessful in,
would involve modeling glass as a material that both reflects and refracts light. We
use the GLSL function refract : (⃗i, n⃗, η) → r⃗ to compute the directions of our
refracted ray. Here, i⃗ is in the incident ray direction, n⃗ is the normal vector at the
position, η is the ratio of refractive indices of the first material to the second, and r⃗ is
our new direction. Once we enter the glass, we subtract distances to march along the
refracted ray since our distances are now negative. We continue marching inside the
glass object using a nested for-loop within our outer raymarching for-loop. When
our signed distance becomes positive again, i.e., when we have exited the object,
we refract our ray again. However, this time we use the negated normal −n⃗, since
the normal at our current position points away from the surface of the object. We
also use the reciprocal of η here, since refractive indices are now reversed. Despite
only using refraction to model glass-like surfaces, we are still able to achieve good
results. The images below contrast the mirror and glass materials. In the mirror
object, we see the reflection of our surrounding scene, whereas this is not the case
for the glass object.

6

(a) Mirror spherical object (b) Glass spherical object

2.6 Recursion

A fantastically convenient side-effect of using signed distance fields is the ease with
which recursive and fractal scenes can be composed. By adding a loop to our
signed distance function and applying something similar to a tiling operator on
each iteration, we can easily form recursive structures.

However, recursive signed distance fields, even with low levels of recursion, are costly
operations that significantly impact performance. As such, it is often important to
wrap recursive construction in bounding boxes. This is often easy to accomplish as
the base of the recursive object is a primitive distance field. The bounding box can
then simply be formed by adding a slightly larger version of the primitive.

2.7 Editor

To show how you can build up an SDF from primitives and operations, we built an
interactive editor. Because we didn’t have so much time, we developed a stack-based
interface where you push operations onto a stack of operations. This is similar to
RPN notation for math, in that we are implicitly representing a tree with a post-
order traversal.

For example, to draw a box with its upper right-hand corner at ⟨1, 1, 1⟩ translated
3 units to the right, and also a sphere with radius 1 centered at the origin, we
conceptually want the following tree of operations.

union

translate ⟨3, 0, 0⟩

rotate 1.48

box ⟨1, 1, 1⟩

sphere 1

7

To input that into the editor, we just follow a post-traversal:

• box ⟨1, 1, 1⟩

• translate ⟨3, 0, 0⟩

• rotate 1.48

• sphere 1

• union

It’s important to note that until you push the union operation onto the stack, you
will not be able to see the sphere. That’s because by default the editor only considers
the first “item” on the stack. It won’t notice the second item until you join it into
one item with union or some other operation.

The editor operations are split into three types: shapes, operations, and transfor-
mations. Shapes push a primitive shape onto the stack. All shapes are centered at
the origin initially and can be translated using translate. Operations combine two
shapes, for example by taking their union or intersection. Transformations modify
a single shape, for example by translating or rotating it.

The editor is mostly implemented in src/pages/editor/gui.js and src/lib/generator.js.
Most operations are implemented using buttons on the main dat.gui instance.
These buttons correspond to instance methods on the Config class. In each of
these methods, we push an operation onto the stack of operations, add a folder to
the dat.gui which represents the stack of operations, and add an input for each
paramter of the operation (radius, offset, etc.).

8

In the Config class, again, we make use of lazy evaluation and caching to avoid
compiling the shader program were unnecessary. For this reason, we hide all public
fields that we expose to the main dat.gui behind getter and setter methods that
internall call the #invalidate method. Similarly, we add a hook to each input
of the stack dat.gui to call #invalidate. #invalidate clears the cached shader
program, so that the next attempt to access the shader will cause it to be assembled
as a string and compiled. Without this, we would be reassembling the shader and
compiling on every frame, which would be very inefficient.

To translate from a stack of operations to a GLSL string, we first recover the tree
structure. In buildSDF we iterate over the stack, popping off previous operations
according to the arity of the current operation, and build a tree. Notably, this tree
is not the same as the conceptual tree of operations because some operations apply
to the domain of a SDF, and some to the range. For example, to translate an object
we offset the input to the SDF, whereas to union two SDFs we take the min of their
outputs. So, in terms of the GLSL AST, we want a tree of function calls acting on
the range where the leaves are primitive shapes, with each leaf is annotated with a
list of transformations to apply to the input to that function. So the intermediate
tree for the above example would be

union

box ⟨1, 1, 1⟩ with translate ⟨3, 0, 0⟩, rotate 1.48 sphere 1

Once we have this tree, we can recursively traverse the tree, transforming nodes to
the appropriate calls. When we reach a leaf, we build up the input to the primitive
shape function by composing the functions for each domain-modifying operation.
Notably, because domain-modifying operations are in a sense the inverses, we com-
pose them in the opposite order in which they were applied. This tree would become
the following GLSL fragment, spliced into a template that is pretty straight-forward.

min(sdSphere(p, 1.00), sdBox(opTx(opRotX(p, 1.48), vec3(3, 0, 0)), vec3(1,
1, 1)))

Once you get the hang of the input model, the interface is very intuitive! Fig. 2
shows a few shapes and scenes we composed using the editor.

As we mentioned, the editor operations can be divided into 3 main types: shapes,
operations and transformations. We describe each of these in greater detail here.

Shapes refer to the geometric primitives we can render. These are written as func-
tions that take certain parameters, always including a position vector representing

9

Figure 2: Assorted products of the editor

our current point, and return a float that represents the signed distances to the
shape from our current point [4]. We can construct the following shapes in our
editor:

• Sphere: Parametrized by the position p⃗ and the radius of the sphere r.

• Box: Parametrized by the position p⃗ and the the coordinate of the corner of
the box b⃗ in the positive quadrant.

• Round Box: Similar to Box, but has an additional parameter r which is a
float that is subtracted off the edges of the box. The value of r determines the
roundedness of the box.

• Cylinder: Parametrized by the position p⃗ and the height h and radius r of
the cylinder.

• Round Cylinder: Similar to how the Round Box works. We take a float as
an additional parameter which is ‘shaved’ off the edges of the cylinder.

• Plane: Parametrized by the position p⃗ and the normal vector n⃗ to the plane.

• Torus: Parametrized by the position p⃗ and the major and minor radii of the
torus.

• Elongated Torus: A variant of Torus that can be extended in the x, y and
z directions. We have parameters for elongating the torus in each of these
directions.

10

• Link: Produces a shape which produces one half of a chain-link geometric
structure. It is parametrized by the position p⃗, the major and minor radii of
the link and the length of the link.

• Ellipsoid: Parametrized by the position p⃗ and one of the radii r of the ellip-
soid.

• Cone: Parametrized by the position p⃗, the vector c⃗ which is normal to the
surface of the cone and the height of the cone h.

• Pyramid: Parametrized by the position p⃗ and the height of the pyramid h.

Operations act on the ranges of our primitives, i.e., they take as input the signed
distance values given by our primitives and compute some new signed distance value.
The stairs operations are drawn from [1]. We provide support for the following
operations in our editor:

• Union: A binary operation that combines two shapes into a larger composite
shape. We take as input 2 floats f1 and f2 for the signed distances to our two
shapes respectively, and return the minimum of f1 and f2.

• Smooth Union: An alternative way of performing Union where we have a
smooth transition between the edges of our two shapes where they are con-
nected. We take an additional float k as an input that determines the degree
of the smoothness of the union between the given shapes. We restrict k to be
between 0 and 2.

• Subtract: A binary operation that combines two shapes by ‘subtracting’ the
second from the first. Intuitively, Subtract removes the common part of the
two shapes from the first shape. We take as input 2 floats f1 and f2 for the
signed distances to our two shapes respectively, and return the maximum of
−f1 and f2.

• Smooth Subtract: Similar to how Smooth Union operates.

• Intersection: A binary operation that combines two shapes by taking the
‘intersection’ of the shapes. Intuitively, Intersection only retains the common
part of our two given shapes. We take as input 2 floats f1 and f2 for the signed
distances to our two shapes respectively, and return the maximum of f1 and
f2.

• Smooth Intersection: Again similar to how Smooth Union operates.

• Union Stairs: A binary operation that takes the union of two shapes and
creates a set of steps between the edges of our two shapes at the places where

11

they connect. We take two additional floats r and n as parameters, where r
is the width of each step and n is the number of steps.

• Difference Stairs: Behaves the same way as Union Stairs, but subtracts the
second shape from the first instead of taking the union.

• Intersection Stairs: Behaves the same way as Union Stairs, but takes the
intersection of the two shapes instead. Fig. 3 shows the Union and Intersection
Stairs.

• Noise: A unary operation that adds Perlin noise to the signed distances of a
shape. We adapt a Perlin noise implementation [2], which is parametrized by
a position vector. We use this noise function in our operation. We then use
the GLSL mix function to ‘add’ some of the noise to the signed distance value
of our shape. Our function also takes in a float ‘noiseProp’ as input, which
determines how much noise is added to the signed distance. (1 − noiseProp)
is the third argument we pass to mix. We restrict noiseProp to between 0 and
0.5.

• Onion: A unary operations that creates a hole inside of a shape, thus creating
a hollow object. We take a float ‘thickness’ as input, which determines the
size of the hole; a smaller values for thickness corresponds to a larger hole.

(a) Union Stairs (b) Intersection Stairs

(c) Noise (d) Double Onion

Figure 3: Different Operations on Spheres

Transformations act on the domain of our primitives, i.e., they take as input some
position vector p⃗ and compute a new position. Since transformations act on the

12

domain, we need to perform the ‘opposite’ transformation on our given inputs to
achieve the correct effect on the range. We provide support for the following trans-
formations in our editor:

• Translate: Shifts the given shape in a desired direction. We take a vector d⃗
as input and subtract it from the position p⃗.

• Scale: Acts on the size of a given shape. We take a float s and divide the
position p⃗ by s.

• Infinite Tile: Reproduces a shape an infinite number of times. We take a
float c that is the repetition period. It is important to note here that we
require that our position be in the positive x-quadrant for Infinite Tile to
work. Otherwise our shape will disappear from the scene.

• Finite Tile: A variant of Infinite Tile which produces a finite number of
repetitions of a shape. Here we take an additional vector l⃗ as input where l⃗ is
the corner of the box which we use to limit the number of repetitions of our
shape.

• RotateX: Rotates a shape around the x-axis, i.e., in a plane perpendicular to
the x-axis. We take an additional float as input, which is the angle of rotation.

• RotateY: Similar to RotateX, but rotates around the y-axis instead.

• RotateZ: Similar to RotateX, but rotates around the z-axis instead.

• Bend: Bends the given shape about the x-axis. We take a float as input
which determines the degree of the bend.

• Twist: Creates a twisting-like effect about the y-axis. We take a float as input
which determines the degree of the twisting effect.

3 Results

We have three main deliverables to show as part of our project. First, we have the
seasquid.frag shader program, which renders an animated seasquid-like object with
soft shadows inside of a blue box. The scene is shown in Fig. 4. While the scene
geometry is not too complicated, the scene illustrates many notable results. The
seasquid object is the composition of primitives and operations on those primitives.
In particular, we use the Sphere and Box primitives, Smooth Union, Smooth Sub-
traction and Bend operations, and the Rotation and Translation transformations.
In addition, we have a mirror/glass sphere in the scene. We are able to render Soft

13

Shadows with two lights at up to 30 FPS. This is very hard to achieve with the ray-
tracing technique we used in Assignment 3. Our interface also provides parameters
for changing the x, y and z coordinates of the camera position and the camera angle.
We also provide support for changing the x, y and z speeds of the camera. These
speeds start at 0 by default, but can be increased to obtain a rotating camera.

Figure 4: Scene rendered by the seasquid.frag program

Second, we have the recursive1.frag shader program. Fig. 5 shows the scene rendered
by this shader at two different stages of its animation. The scene renders at 15 frames
per second, which would not naively be possible in a raytracing engine.

14

Figure 5: Scene rendered by the recursive1.frag shader at different stages

Our third deliverable is the editor which we described in a previous section. The
editor automates the assembling of shader programs, using which we can quickly
build our own customizable scenes. We show some such scenes in Fig. 2, as well as
in Fig. 3. The editor again illustrates the benefits that the composition of primitives
and operations in raymarching can provide. Our editor is also built in such a way
that it easy to add new features to it.

4 Future Work

There are a number of features that we can possibly improve on in our editor. As we
described in the Editor section, we compile our stack of operations to a GLSL string,
which is then compiled. So, when we change a certain parameter in our GUI, we
reassemble a shader program and compile it. Our display then shows the result of

15

compiling this new shader program. This means that there is a ‘jump’ in our display
whenever a shader program is compiled. It might make for a better display if, for
instance, we could animate the transition of the radius of a sphere being increased.
A tradeoff here, however, would be that it would quite expensive to do this kind of
a computation repeatedly.

We also think that while the way our GUI works right now, using a stack of opera-
tions, is quite intuitive once the user understands its functioning, it might be more
accessible and interactive to have a UI where the user can click and drag shapes
onto the screen. This way, the user can see the operations being carried out on the
screen itself. Again, this might require some support for animation. It would also
be great if we could have a menu from which to select the features we want in our
editor at any given time. At the moment, our screen can get a bit cluttered because
of the number of features we have.

References
[1] hg_sdf library. url: http://mercury.sexy/hg_sdf.
[2] Perlin morph. url: https://www.shadertoy.com/view/Ms2yWz.
[3] Phong reflection model. url: https : / / en . wikipedia . org / wiki / Phong _

reflection_model.
[4] Inigo Quilez. Distance functions. url: https://iquilezles.org/www/articles/

distfunctions/distfunctions.htm.
[5] Inigo Quilez. Normals for an SDF. url: https://iquilezles.org/www/

articles/normalsSDF/normalsSDF.htm.
[6] Inigo Quilez. Penumbra shadows in raymarched SDFS. url: https://iquilezles.

org/www/articles/rmshadows/rmshadows.htm.
[7] WebGL Tutorial. url: https://developer.mozilla.org/en-US/docs/Web/

API/WebGL_API/Tutorial.
[8] WebGL2 Shadertoy. url: https://webgl2fundamentals.org/webgl/lessons/

webgl-shadertoy.html.

16

http://mercury.sexy/hg_sdf
https://www.shadertoy.com/view/Ms2yWz
https://en.wikipedia.org/wiki/Phong_reflection_model
https://en.wikipedia.org/wiki/Phong_reflection_model
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
https://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
https://iquilezles.org/www/articles/rmshadows/rmshadows.htm
https://iquilezles.org/www/articles/rmshadows/rmshadows.htm
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial
https://webgl2fundamentals.org/webgl/lessons/webgl-shadertoy.html
https://webgl2fundamentals.org/webgl/lessons/webgl-shadertoy.html

	Introduction
	Methodology
	Shader compilation
	Raymarching
	Hard and soft shadows
	Phong shading
	Reflection and refraction
	Recursion
	Editor

	Results
	Future Work

